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Abstract   

The goal of an in vitro fertilization (IVF) cycle is a healthy live-born baby. Despite the many 

advances in the field of assisted reproductive technologies, accurately predicting the outcome of 

an IVF cycle has yet to be achieved. One reason for this is the method of selecting an embryo for 

transfer. Morphological assessment of embryos is the traditional method of evaluating embryo 

quality and selecting which embryo to transfer. However, this subjective method of assessing 

embryos leads to inter- and intra-observer variability, resulting in less-than-optimal IVF success 

rates. To overcome this, it is common practice to transfer more than one embryo, potentially 

resulting in high-risk multiple pregnancies. Although time-lapse incubators and preimplantation 

genetic testing for aneuploidy have been introduced to help increase the chances of live birth, the 

outcomes remain less than ideal. Utilization of artificial intelligence (AI) has become 

increasingly popular in the medical field and is increasingly being leveraged in the embryology 

laboratory to help improve IVF outcomes. Many studies have been published investigating the 

use of AI as an unbiased, automated approach to embryo assessment. This review summarizes 

recent AI advancements in the embryology laboratory.  
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Introduction  

Since the late 1970s, when the first ―test-tube baby‖ was born in England, the field of 

reproductive endocrinology and infertility has made many advancements. However, despite 

many attempts to create prediction models, we still struggle to accurately predict the outcome of 

an in vitro fertilization (IVF) cycle.  

Initially, prediction models were based on well-known statistical models (Bancsi et al., 2004; 

Hunault et al., 2002; Jurisica et al., 1998; van Weert 2008). More recently, the emerging 

technologies of time-lapse incubators and preimplantation genetic testing (PGT) were introduced 

in the field as important achievements, with the potential to produce a more objective method of 

selecting embryos with the best implantation probability. However, at present, there is 

insufficient evidence to recommend the routine use of these techniques for the sole purpose of 

improving single embryo transfer (ET) live birth rates (Khosravi et al., 2019; Tiitinen et al., 

2019). Within the last decade, machine learning (ML), more specifically convolutional neural 

networks (CNNs), have been used to assist with medical imaging in a variety of fields, such as 

ophthalmology (Abràmoff et al., 2016), dermatology (Esteva et al., 2017), radiology (Hosny et 

al., 2018), and pathology (Khosravi et al., 2018). This technology has also been applied in the 

embryology laboratory, aiming to improve the selection of the single embryo with the best 

implantation potential to achieve the ultimate goal of fertility treatment: the birth of a healthy 

baby (Khorsavi et al., 2019). Since artificial intelligence (AI) has found a place in IVF, its 

potential use in nearly every aspect of infertility patient care has been investigated, including for 

identifying  empty or oocyte-containing follicles; predicting embryo cell stages, blastocyst (BL) 

formation from oocytes, and live birth from BLs; assessing sperm morphology and human BL 

quality; improving embryo selection; developing optimal IVF stimulation protocols; and quality 

control (Curchoe and Bormann 2019; Bormann et al., 2021a). The goal of this review is to 

summarize recent advancements using AI technology in the embryology laboratory.  

AI Learning Algorithms 

AI is a general concept comprising diverse mathematical approaches with the capacity to make 

predictions based on complex pattern recognition by incorporating the processing power of 

computers (Malik et al., 2021). The selected algorithm(s) and the weight distribution attributed to 

its parameters define an AI model (Burkov 2019).   

The selection of an ML model is determined by the intended task (e.g., classification vs 

regression vs ranking), the dataset’s characteristics (e.g., size, labeled/unlabeled data, structured 

vs unstructured data), and the planned learning approach (e.g., supervised, unsupervised). Based 

on these variables, scientists can choose among several different approaches to build algorithms 

or blocks (pipelines) of algorithms with different learning capabilities (i.e., shallow or deep 

learning). Examples of learning algorithms include artificial neural networks (ANNs), support 

vector machines (SVM), and decision trees, among others (Jordan and Mitchell 2015). Selecting 

ML models is difficult, which explains why sometimes several architectures can be tested at 

once (Burkov 2019). Chavez-Badiola et al., presented one such example as a proof of concept 

when five different algorithms were trained and tested on two datasets to assess their 

                  



generalization capabilities to predict embryo implantation. This study presents an example of 

how this approach could guide scientists during the selection of a model toward clinical 

implementation (Chavez-Badiola et al., 2020a). In this study, however, the limited size of the 

datasets could explain the poor performance of ANNs, making a real comparison against ANNs 

potentially inadequate.  

Several other studies have tested multiple architectures (Morales 2008 et al.; Miyagi et al., 2019), 

including the description by VerMilyea et al., of how different model architectures and 

hyperparameters (i.e., loss function and optimization methods) were considered before building 

their final architecture (VerMilyea et al., 2020). Overall, results from these studies illustrate how 

different algorithms, even when trained on identical datasets, result in different performances, 

underlining the essential importance of a well-designed mathematical and computational 

approach.  

AI Algorithm Training and Validation 

As problem complexity scales, most learning algorithms begin to show their inherent limits. One 

outstanding exception is ANNs. ANNs are designed to solve challenging classification problems 

and process large amounts of complex (non-linear) features simultaneously (Lancashire et al., 

2009), which in turn tend to benefit from large training datasets. Disadvantages of ANNs include 

their tendency to overfit and the ―black box‖ nature of their hidden layers (Tu 1996). 

ANNs are a family of algorithms that includes CNNs, which stand out for image analysis due to 

their ability to perform numerical matrix analysis, in contrast with non-CNNs, which allow other 

information as input (e.g., age). As expected, CNNs have become a common recourse for 

embryo analysis based on static images and time-lapse videos, as confirmed by the recent 

number of publications describing their implementation as either stand-alone solution (Chen et 

al., 2019; Bormann et al., 2020a) or part of a pipeline of algorithms allowing for efficient image 

analysis (Kragh et al., 2019; Chavez-Badiola et al., 2020b). 

The next step after selecting a learning algorithm is its training. This involves adjusting the 

model to minimize the error of the output using the values of the data provided as a ground truth 

(i.e., training), and a second step where the trained model is exposed to ―unseen‖ data to assess 

its performance (i.e., validation). The relevance of a high-quality dataset cannot be 

overestimated, since problems related to training on suboptimal datasets are numerous. One 

example is the result of training on an unbalanced dataset, which can lead to unreliable results 

(Chawla et al., 2004), which may have been the case in a study by Tran et al. In this study, the 

high proportion of embryos with negative outcomes outweighed those with positive outcomes, 

resulting in a deeply unbalanced dataset, perhaps not representative of the problem, which in turn 

led to an almost unrealistic performance (area under the ROC curve of 0.93) (Tran et al., 2019; 

Kan-Tor et al., 2020a).  
 

The size of a dataset is also relevant. However, encountering high-quality and large datasets is 

uncommon in the field of reproductive medicine due to a lack of standardization in data 

collection and storage, the routine use of manual annotations, and the challenges related to data 

sharing (Hickman et al., 2020; Curchoe 2021). There are, however, strategies to optimize a 

                  



dataset’s size. Examples include the recourse to data augmentation made by VerMileya et al., 

where images in their training set were subjected to manipulations (e.g., rotations, reflections, 

jitter) (VerMileya et al., 2020; Kanakasabapathy et al., 2021), allowing the training examples to 

multiply without a real increase in the size of the dataset. In this context, the use of synthetic data 

seems a promising tool to generate large, diverse, representative, and balanced datasets without 

the constrains of accessing analog clinical data.  Still, understanding its inherent challenges will 

become paramount to making best use of this attractive approach (Chen et al., 2021). Another 

proposed solution to approach a limited-sized dataset is a top-down feature extraction (Chavez-

Badiola et al., 2020a), which relies on the use of customized feature extractors designed with 

knowledge of the problem, as opposed to CNNs, which require a lot of data to determine the 

feature extractors to use (bottom-up approach).  

In brief, most training data sets used in AI protocols are labeled data, i.e., supervised learning. 

Labeling is performed by humans and thus is very subjective. In addition, if clinical outcome 

data are used, humans are selecting the embryos for transfer. The requirement for heterogeneous 

diverse training data, including an ethnically and racially diverse population of patients, is 

essential. A balanced set of data is also important to eliminate bias in AI learning (Swain et al., 

2020). Unsupervised learning is an attractive alternative that needs to be explored.  

Clinical Training and Validation 

Validation as a part of the training process should be separated from the validation of a system in 

a clinical setting (Curchoe et al., 2020). AI should be built to become robust enough to perform 

beyond its training dataset. But as described recently by Meseguer and colleagues, when a 

system is deployed in real-life, specific conditions from new datasets, including the wide range 

of characteristics that surround clinical and laboratory procedures, may lead to an AI system’s 

suboptimal (Meseguer and Valera 2021) and sometimes even erratic performance, a common 

ML problem known as under specification (D’Amour et al., 2020).  

Most current AI models for embryo selection rely on expert human supervision (supervised 

learning).  One notable exception is the study by Kanakasabapathy et al., where the authors 

present an adaptive adversarial neural network (AANNs), which uses a form of unsupervised 

learning called adversarial learning. In this study, AANNs performance was tested when using 

different microscopes on a variety of samples including human embryos, sperm and blood cells. 

The authors compared a supervised learning model against their AANN and show how the later 

managed to maintain performance despite profound variations in image quality, suggesting 

AANNs could overcome training bias and task-irrelevant feature information incorporated into 

the model. By training neural networks to focus on relevant features alone, AIs might show 

better performance when deployed through different laboratory settings (Kanakasabapathy et al., 

2021). Since this study only discriminates between blastocyst and no-blastocyst, its clinical 

application during the embryo selection process is still to be tested. This, however, presents as an 

example on how AI’s training could be designed to become self-supervised. 

Learning algorithms are attractive because they are expected to continuously improve 

performance as the available dataset grows. However, the brute force of a large dataset alone 

does not guarantee improved performance; if further training is not carefully undertaken, it risks 

                  



performance degradation (Lavin et al., 2021) and the threat of data poisoning (Schwarzchild et 

al., 2020), whether intentional or not. Understanding the risks associated with further training is 

key to assessing a model’s robustness (e.g., internal validation, external validation). Moreover, 

continuously evaluating its performance after tuning according to individual practices through a 

standardized quality assurance process is paramount, or at least highly desirable when 

considering the clinical readiness of an AI system (Curchoe et al., 2020; Mahadevaiah et al., 

2020).   

AI Application in Assisted Reproductive Medicine   

Both invasive and noninvasive methods are used to select competent, healthy gametes for 

combination during assisted reproductive technology (ART) procedures. Every stage of ART 

treatment (fertilization, embryo development, implantation, healthy clinical pregnancy) depends 

on high-quality, mature, genetically normal sperm and oocytes. Morphology of oocytes (cumulus 

oocyte complex, polar body, and ooplasm defects) and motility characteristics of sperm (swim 

up, gradient centrifugation or laminar flow microchannels on chip, and PVP challenge) 

combined with morphology (vacuoles, head shape, and midpiece and tail defects) are routinely 

used to select gametes for insemination. Unfortunately, developmentally incompetent oocytes 

may exhibit the same morphology as competent ones. In addition, even high-powered 

microscopy, such as Intracytoplasmic morphologically selected sperm injection (IMSI), cannot detect 

DNA fragmentation in sperm.   

AI Application on Sperm 

In reproductive urology, early AI applications focused on semen parameters, but the technology 

has advanced to include the development of automated sperm detection and semen analyses.  AI 

technology for semen analysis, sperm viability, and DNA integrity has even been bridged with 

external hardware devices and smartphone (mobile) applications (Dimitriadis et al., 2019a; 

Kanakasabapathy et al., 2017).  

Goodsen et al., classified single sperm as progressive, intermediate, hyperactivated, slow, or 

weakly motile using SVMs with 89.9% accuracy (Goodsen et al., 2017). Mirsky and colleagues 

employed interferometric phase microscopy along with SVM to develop a model to assess sperm 

morphology and classify sperm into ―good‖ or ―bad‖ morphology with over 88% accuracy 

(Mirsky et al., 2017). Thirumalaraju and colleagues used smartphone microscopy in conjunction 

with deep transfer learning to develop an inexpensive system that can accurately measure sperm 

morphology based on WHO 5
th

 edition Kruger strict criteria (Thirumalaraju et al., 2019a).  

Ovarian Stimulation Management 

Infertility is a multifactor disease, which makes diagnosis and treatment complicated. Liao et al. 

have shown that a ML-derived algorithm is useful to assist clinicians in making an efficient and 

accurate initial judgment on the condition of patients with infertility. In their study, over 60,000 

infertile couples’ medical records were evaluated using a grading system that classified patients 

into 5 grades ranging from A to E. The worst grade, E, represented a 0.90% pregnancy rate, 

                  



while the pregnancy rate in the A grade was 53.8%. The cross-validation results showed that the 

stability of the system was 95.9% (Liao et al., 2020). 

Letterie et al., evaluated a computer decision support system for day-to-day management of 

ovarian stimulation during IVF following key decisions made during an IVF cycle: [1] stop 

stimulation or continue stimulation. If the decision was to stop, then the next automated decision 

was to [2] trigger or cancel. If the decision was to continue stimulation, then the next key 

decisions were [3] the number of days to follow-up and [4] whether any dose adjustment was 

needed (Letterie and Mac Donald 2020). The authors used data derived from an electronic 

medical records system of a female population undergoing IVF cycles and oocyte 

cryopreservation to include the ’patients’ demographics, past medical history, and infertility 

evaluation, including diagnosis, laboratory testing for ovarian reserve, and any radiologic studies 

pertinent to a diagnosis of infertility. The four key decisions during the process of ovarian 

stimulation and IVF were compared to expert decisions across 12 providers; they were found to 

have a sensitivity of 0.98 for trigger and 0.78 for cycle cancellation.  

AI Application on Oocytes 

Controlled ovarian stimulation (COS) yields oocytes at various stages of meiotic maturity. 

Identification of MII (extruded polar body), MI (no polar body), GV (germinal vesicle indicative 

of prophase I), giant MII oocytes, and other abnormalities is primarily performed by 

embryologists; however, nuclear and cytoplasmic maturity cannot be assessed. Noninvasive AI 

methods to evaluate oocyte competency could become an important selection and prediction tool 

to reduce the number of embryos created and wasted (of paramount importance in countries that 

restrict supernumerary embryos), to reduce the number of embryos for trophectoderm (TE) 

biopsy and PGT, and to prognose the success of an IVF cycle. In the case of donor egg cycles, a 

tool to objectively assess oocyte quality and subsequent fertilization potential may be very 

valuable to intended parents for psycho-social reasons. Additionally, experimental and research 

procedures like in vitro maturation (IVM) of oocytes, somatic cell nuclear transfer and 

reprogramming, in vitro gametogenesis (IVG), and more would benefit from prediction and 

selection AI systems.  

In 2011, Setti and colleagues performed a meta-analysis to identify the relationship between 

oocyte morphology and ICSI outcomes (Setti et al., 2011). Their study demonstrated that the 

presence of a large first polar body and a large perivitelline space and the inclusion of refractile 

bodies or vacuoles are associated with decreased oocyte fertilization. In 2013, Manna et al. 

performed texture analysis of 269 oocyte images and tracked the corresponding embryo 

development (Manna et al., 2013). Texture features were used with a neural network to predict 

the outcome of a given cycle, meaning that multiple transfers were present in the data used, for 

an AUC of 0.80. In 2021, Targosz and colleagues tested 71 deep neural network models for 

semantic oocyte segmentation (Targosz et al., 2021). They trained their algorithm to classify the 

following oocyte morphologic features: clear cytoplasm, diffuse cytoplasmic granularity, smooth 

endoplasmic reticulum cluster, dark cytoplasm, vacuoles, first polar body, multi-polar body, 

fragmented polar body, perivitelline space, zona pellucida, cumulus cells, and the germinal 

                  



vesicle. In this study, the top training accuracy (ACC) reached about 85% for training patterns 

and 79% for validation. 

In 2020, Kanakasabapathy and colleagues trained a CNN to predict fertilization (2PN or non-

2PN (pronuclear formation)) potential from oocyte images and to identify oocytes with the 

highest fertilization potential >86% of the time (Kanakasabapathy et al., 2020a). Results from 

this study allow for the development of novel quality assurance tools used to monitor oocyte 

stimulation regimens, assess ICSI performance, maintain optimal fertilization and embryo 

culture conditions, and evaluate oocyte vitrification and warming procedures.  This oocyte 

quality algorithm was helpful in identifying an association between oocyte morphology and 

subsequent embryo development (Sacha et al., 2021).  

Dickinson and colleagues used deep CNNs to locate the first extruded polar body which allowed 

them to distinguish mature, metaphase II oocytes from metaphase I and germinal vesicle stage 

oocytes (Dickinson et al., 2020).   Pinpointing the location of the extruded polar body also 

allowed this algorithm to identify the correct location on the oocyte to inject sperm for ICSI. In 

their study, over 14,000 images of MII oocytes were used for training, validation, and testing. 

The deep learning CNN was able to correctly identify the location of the polar body and the 

corresponding location for sperm injection for a test set of 3,888 oocytes with 98.9% accuracy 

with a 95% confidence interval (CI) ranging between 98.5% and 99.2% (Dickinson et al., 2020). 

AI Application on Pronuclear Stage Embryos 

Normal fertilization follows a definite course of events. Oocytes show circular waves (Payne et 

al., 1997) of granulation within the ooplasm after ICSI. During this granulation phase, the sperm 

head decondenses and the second polar body is extruded. This is followed by the formation of 

the male pronucleus. At about the same time, the female pronucleus forms and is drawn toward 

the male pronucleus until apposition is achieved. Both pronuclei then increase in size, and their 

nucleoli move around and arrange themselves near the common junction. Only zygotes with two 

distinct pronuclei are considered normal and appropriate for transfer. It is critical that 

embryologists assess fertilization status correctly, as there is only a small window of time in 

which pronuclei can be properly counted.   

Fertilization checks and embryo quality assessments require manual examination, status 

recording, and embryo development scoring. These processes are labor intensive and subjective. 

In 2019, Dimitriadis and colleagues described the development of a CNN that can distinguish 

between 2PN and non-2PN zygotes at 18 hours post-insemination with >90% accuracy 

(Dimitriadis et al., 2019b). This system can be used as an embryologist aid to help confirm the 

fertilization assessment of each oocyte. It can also be used to monitor individual embryologists 

performing ICSI in a clinical setting for advanced quality assurance to improve patient outcomes 

(Thirumalaraju et al., 2019b; Bormann et al., 2021a). 

 

Several studies have shown that morphological features specific to the pronuclear stage embryo 

can be used to assess embryo quality and developmental potential.  These grading systems factor 

                  



in the size, shape, and alignment of pronuclei.  They also factor in the number and distribution of 

nucleoli and the overall appearance of the cytoplasm.  (Scott and Smith 1998; Scott et al., 2000; 

Tesarik and Greco 1999).  These morphological grading systems have also been shown to help 

aid embryologists in selecting embryos with high implantation potential. (Lan et al., 2003; 

Zollner et al., 2003).  Manually scoring zygotes is a labor-intensive and subjective activity. As 

such, few practices continue to assess this critical stage of development.  However, with the use 

of AI, these predictive features may be readily incorporated into an embryo selection algorithm 

(ESA).  

In 2021, Zhao and colleagues used CNNs for segmentation of pronuclear-stage embryos. They 

examined the morphokinetic patterns of the zygote cytoplasm, zona pellucidae, and pronuclei. 

Their manually annotated test set had precision of >97% for the cytoplasm, 84% for the 

pronuclei, and approximately 80% for the zona pellucida. The authors concluded that their CNN 

system has the potential to be incorporated in a clinical practice for pronuclear-stage 

segmentation as a powerful tool with high precision, reproducibility, and speed (Zhao et al., 

2021). Early parameters of zygotic (cytoplasmic movement) development, analyzed by AI-

powered methods, have been shown to be predictive of BL development. Compared to human 

evaluation and prediction using morphological parameters, AI-based methods using cytoplasmic 

kinetics showed on average 10% higher accuracy (Coticchio et al., 2021). 

AI Application on Cleavage Stage Embryos 

Embryo transfers are generally performed at the cleavage or BL stage of development. Cleavage-

stage embryos are generally selected for transfer based on only three features: blastomere cell 

count, percentage of overall cytoplasmic fragmentation and degree of asymmetry between 

blastomeres (Prados et al., 2012). These grades or made by visual examination of the embryos 

and have been shown to be highly subjective in nature.  

The introduction of time-lapse imaging (TLI) technology has allowed for both automated and 

manual assessments of embryo development at precise times and under controlled environments 

(Azzarello et al., 2012; Cruz et al., 2012; Hlinka et al., 2012; Lechniak et al., 2008; Lemmen et 

al., 2008). However, most of the TLI algorithms only shown promising results in identifying 

embryos with low developmental potential. The incorporation of TLI systems to standard manual 

embryo assessments did not improve overall clinical outcomes nor did they decrease the amount 

of time embryologists spent assessing embryo morphology (Chen et al., 2017; Conaghan et al., 

2013; Kaser et al., 2016; Kirkegaard et al., 2015).  

Dimitriadis and colleagues demonstrated a fast and simple cohort embryo selection (CES) 

method for selecting cleavage-stage embryos that will develop into high-quality BLs. This study 

demonstrated the ability of embryologists to quickly identify high-quality cleavage-stage 

embryos when all embryos in the cohort were simultaneously compared in a single image. This 

method of selection outperformed traditional methods of cleavage-stage embryo ranking based 

on both morphology and adjunctive morphokinetic TLI parameters (Dimitriadis et al., 2017). 

This method is excellent at identifying high-quality embryos from a cohort; however, this 

method of selection is subjective and lacks consistency between operators.  

                  



Computer vision technology has been proposed as a solution to overcome the labor constraints 

and subjective nature of assessing and selecting embryos based on morphology and 

morphokinetic measurements. Kanakasabapathy and colleagues used deep learning CNNs to 

train and validate embryo assessments on day-3 embryo images based on embryo developmental 

outcomes recorded on day 5 of culture. This algorithm was trained to make the following day-5 

developmental predictions: embryo arrest, morula, early BL, full BL, and high-quality BL. Using 

a test set of 748 embryos, the accuracy of the algorithm in predicting BL development at 70 hpi 

was 71.9% (CI: 68.4% to 75.2%) (Bortoletto et al., 2019; Kanakasabapathy et al., 2020b). 

To evaluate the potential improvement in predictive power, Kanakasabapathy and colleagues 

also compared the accuracy of predictions by embryologists in identifying embryos that will 

eventually develop into BLs when presented with embryo morphology imaged on days 2 and 3 

of development. Additionally, their performance was evaluated with and without the use of the 

Eeva three-category TLI algorithm that uses P2 (duration of the 2-cell stage) and P3 (duration of 

the three-cell stage) to predict BL development (VerMilyea et al., 2014). The neural network 

significantly outperformed the embryologists in identifying embryos that will develop into BLs 

correctly (P < 0.0001) and the overall accuracy in prediction, regardless of the evaluated 

methodology (P < 0.0001). This was the first AI-based system for predicting the developmental 

fate of cleavage-stage embryos (Kanakasabapathy et al., 2020b). 

Bormann and colleagues described an early warning system for using cleavage-stage embryos 

and statistical process controls for detecting clinically relevant shifts due to laboratory conditions 

(Bormann et al., 2021a). This study presented a novel key performance indicator (KPI) for 

monitoring embryo culture conditions at the cleavage stage of development. This AI-based KPI 

predicted the percentage of cleavage-stage embryos that would develop into high-quality BLs on 

day 5 of development. When compared with 5 established cleavage-stage KPIs, this AI-based 

KPI for predicting high-quality BL formation had the highest association with ongoing 

pregnancy rates (R
2
=0.906). This is the first AI-based cleavage-stage KPI demonstrated to detect 

changes in a culture environment that resulted in a shift in pregnancy outcomes.   

Carrasco et al., used 800 cleavage-stage embryo images with decision tree methods and 

statistical analysis of features to determine the implantation potential of cleavage-stage embryos 

(Carrasco et al., 2017). Wang et al. extracted features from textures from 206 micrographs of 

early embryos (2 hours of development) (Wang et al., 2018). SVM was used (10-fold cross 

validation) to achieve 77.7% accuracy and 0.78 of AUC to predict the early embryo development 

stage (initial and days 1, 2, 3, and 4).  

Using CNNs, Meyer and colleagues were able to classify day 3 cleavage-stage embryo images as 

aneuploid or euploid with a high specificity and thus were able to sufficiently identify 85.5% of 

aneuploid embryos (Meyer et al., 2020). These results demonstrate the ability of CNNs to 

identify noninvasive markers for detecting genetically abnormal embryos. Collectively, these 

studies show that a variety of AI techniques can be utilized to extract unique features from 

cleavage-stage embryos, which may be used for classification, assessment ranking, or to aid in 

clinic decision-making.  

                  



Kelly and colleagues used CNNs to identify safe regions on a cleavage-stage embryo to perform 

laser-assisted hatching. This study utilized more than 13,000 annotated images of cleavage-stage 

embryos to develop an algorithm that identified the largest perivitelline space region or 

atretic/fragmentated blastomeres. These regions of the cleavage-stage embryos were considered 

the safest at which to perform laser-assisted hatching. The AI-trained network was tested on 

almost 4,000 cleavage-stage images had 99.4% accuracy with a 95% CI ranging between 99.1% 

and 99.6% (Kelly et al., 2020).  

Embryo witnessing is a critical step in the embryo transfer process.  Traditionally, embryo 

identification is performed by two embryologists to ensure the correct embryo has been selected 

for transfer.   However, as gametes and embryos are moved from one dish to another during an 

ART cycle, the possibility of misidentification still exists. Bormann and colleagues used CNNs 

to classify images of embryos captured on Day 3 of development at 60 and 64 hours post 

insemination.   The algorithm processed embryo images for each patient and produced a unique 

key that was associated with the patient ID at the initial evaluation.  At the later time, images 

were captured and CNNs were used to match the embryo morphology with the initial image.  

The accuracy of the CNN in correctly matching embryos at the different time periods on Day 3 

was 100% (CI: 99.1% to 100%, n = 412) (Bormann et al., 2021b). This technology offers a 

robust witnessing step based on unique morphological features that are specific to each 

individual embryo. 

AI Application on Blastocyst Stage Embryos 

A key question about BL assessment needs to be answered: When do we evaluate BLs? Since 

BL development is a dynamic process, do we evaluate and grade BLs when they are exhibiting 

the ―best‖ appearance? Or should we evaluate them at a particular time? This question has yet to 

be answered by existing AI applications, which have utilized both fixed and flexible time-based 

methods of evaluation. 

Another issue with BL assessment involves grading. For instance, the problem with using 

Gardner-type BL grading to assess embryo quality is that it is subjective and does not include 

quantitative parameters. It is a visual estimate of the number, size, and morphology of the inner 

cell mass (ICM) and TE cells. On the other hand, BL expansion can be easier to standardize if 

we use measurement tools and volume ratios. The quality of the ICM is estimated by the number 

and compaction of the cells. However, the minimum number of ICM cells necessary to develop 

into a viable human fetus is unknown. In addition, the ICM is a cocktail of pluripotent (epiblast) 

and primitive endoderm (hypoblast) cells. The size of the ICM alone does not indicate the 

composition of the cells within.  

Assessing TE cells is more challenging, as the cell number, shape, nuclear content, and position 

in the expanding BL are not standardized. AI methods that use segmentation of the BL will 

enable us to objectively score TE complement. It is easier to judge the compaction of the ICM 

than it is to assess TE quality.  

The bigger question is, do we need to assess BLs at a particular time point? We know that day-5 

and day-6 BLs have different outcomes, even when using fresh or frozen ET cycles (Irani et al., 

2018). This is especially important to consider when developing AI algorithms that use a single 

                  



2D BL image. We must consider the speed and timing of developmental events, particularly 

compaction and blastulation. 

For successful implantation, both BL cell types (ICM and TE) are required. Since current BL 

grading systems are very simple, it is no surprise that they are not very informative when used to 

predict implantation. More complex and detailed BL grading systems correlate very well with 

implantation potential and ploidy assessment. In their recent paper, Zhan et al. converted 

alphanumeric BL grades into a numeric score for use in statistical analysis and correlations 

(Zhan et al., 2020a). By using AI, we might be able to strengthen the correlation between BL 

assessment and outcome in a more objective manner. Also, the ability of AI BL applications 

predicted by early developmental versus later developmental events needs to be explored.   

Time-Lapse Microscopy (TLM) Image Analysis 

AI algorithms can be applied to ―raw‖ TLM images. In a recently described image analysis 

system (Tran et al., 2019), supervised AI training using previously labeled images was 

developed. The labels used included BL and morphokinetic annotations with positive or negative 

implantation results. One of the drawbacks of the system was its reliance on humans to create the 

labels, introducing biased observations and scores. The other problematic practice was the use of 

non-viable, non-fertilized, or discarded material for negative training groups to increase the 

training data set. The rationale behind this was the establishment of a completely automatic 

system that will also be able to recognize these negative embryos. The question remains, Will the 

developed algorithms perform equally well after removing the discarded group? And are they 

superior to the BL grading system (Kan-Tor et al., 2020b)?  

In another recent study, a different approach was used to predict BL development. It used TLM 

data up to day 3 of embryo development. Two different AI algorithms were developed: an 

automatic morphokinetic data model (temporal) and a TLM embryo image model (spatial). Both 

models have comparable predictive power (~0.7). When combined, the different weights were 

used to optimize BL prediction. Interestingly, more weights were given to the morphokinetic 

data compared to the images. When compared to embryologists, the AI model performed better 

in terms of sensitivity and specificity (Liao et al., 2021). In another TLM study, BL prediction 

was accomplished by using morphokinetic TLM data from the first three days of development. 

Interestingly, by applying a self-improvement (reinforcement) strategy, the predictive power of 

the AI system improved (d’Estaing et al., 2021).  

One unique approach to assessing BL quality is to evaluate a quantitative standard expansion 

assay (qSEA) utilizing AI. This measures the kinetics of BL expansion and correlates to 

outcome, where faster-expanding BLs exhibit higher implantation potential (Huang et al., 2021).  

The following novel embryo parameters have been proposed by Bori et al., to be included in AI 

selection models: pronuclear kinetics, BL measurements, the size of the ICM, and the cell cycle 

length of the TE cells. To verify the general utilization of their proposed model (donor oocytes), 

the authors’ algorithm will need to be evaluated on the IVF patient population. The same group 

presented a novel model utilizing AI to predict embryo implantation. Utilizing AI image analysis 

combined with the embryo proteomic profile of PGT euploid embryo spent culture media, the 

authors were able to demonstrate very high implantation prediction. Although the study is 

preliminary, it demonstrates the power of AI to combine different data points (proteins and 

morphology) (Bori et al., 2020). 

                  



Static Image Analysis of Blastocysts 

The object of a study by Khosravi et al. was to establish an AI deep learning model that can 

evaluate BL quality (Khosravi et al., 2019). In this AI-based prediction model, the BL expansion 

was an important parameter, followed by ICM and TE quality. The precise time point used for 

the AI evaluation (110 hr) demonstrated the importance of embryo developmental kinetics for 

embryo prediction. In a 2020 study by Bormann et al., a single image from the TLM image pool 

at 113 hr was used for analysis (Bormann et al., 2020a). A CNN system was used to classify BLs 

based on the presence of the cavity and the morphological quality of the ICM and TE. Similar to 

Khosravi et al., Bormann’s group demonstrated that the accuracy of this system for classifying 

BLs versus non-BLs was very high (91%). By using the genetic algorithm, the authors 

established a BL ranking system called the ―BL score.‖ The evaluation of the AI BL selection 

method, using implantation outcomes of the BLs selected by humans for transfer, showed over 

50% percent positive outcomes. It will be necessary to perform a comparative prospective study 

to identify the (dis)agreement in BL selection for transfer between AI models and embryologists. 

The emerging question is how different the BL selection for ET is between embryologists using 

the Gardner BL grading system and AI model selection.  

Bormann and colleagues demonstrated that the high degree of variability seen among 

embryologists making decisions on vitrification and embryo biopsy based on standard 

morphological assessments can be dramatically improved using deep neural networks (Bormann 

et al., 2020b).  Souter et al., further demonstrated that deep-learning CNNs can be used to 

accurately identify which Day 3 assisted-hatched embryos met Day 5 criteria for trophectoderm 

biopsy and cryopreservation with 93.7% sensitivity and 96.3% specificity.  This validation study 

was the first of its kind to demonstrate that an embryo decision making algorithm could be 

successfully applied to embryos that had been artificially breached to promote premature 

herniation of trophectoderm cells for blastocyst stage biopsy (Souter et al., 2019).    

How many times will the AI choose a different BL for ET than the embryologist within the 

cohort of available embryos? There is a lot of disagreement among embryologists grading BLs, 

but how many times is the best BL chosen for ET? There are no standards in choosing an AI 

system for embryo evaluation. They depend on the type of data, the size of the data set, and the 

output queries (Fernandez et al., 2020). It will be helpful to compare multiple AI models on the 

same data set.  

Other AI models do not use a specific time point for image analysis. In the model by VerMilyea 

et al., the ―viability‖ of the embryos was categorized based on the embryologist-given Gardner 

BL grade, where a ―3BB‖ BL was a cut-off for viable and non-viable classes using fetal heart 

measurements (VerMilyea et al., 2020). Using computer vision image processing and deep 

learning, the authors achieved an overall accuracy of over 60% and an average accuracy 

improvement of 24% over embryologist grading.  

Numerous complex neural network architectures have been proposed for image recognition and 

performance of these architectures are highly dependent on the requested task.  Thirumalaraju 

and colleagues compared the use of 8 different architectures to classify blastocyst stage embryo 

images captured on a variety of imaging platforms.  This study showed that Xception performed 

best in learning categorical embryo data and was able to accurately classify blastocysts based on 

their morphological quality. In this study, Xception correctly classified >99.5% of the highest 

                  



quality blastocysts which is of critical importance, clinically, when identifying embryos suited 

for transfer (Thirumalaraju et al., 2021). 

Automated Annotation of Blastocysts 

One of the potentially confounding factors that can affect AI protocols is the fact that the 

morphokinetic annotations are done by humans and are subjective. It will be necessary to 

develop AI models that can recognize abnormal karyokinetic (nuclear) and cytokinetic 

abnormalities (direct divisions 1–3, cell fusion) for optimal automatic annotation.  

Most ML methods for embryo assessment and selection have used ―computer vision methods‖ 

utilizing visual data (TLM or microscopic images). CNN is a method of choice to process visual 

information. It can be used for automatic cell annotation (Malmsten et al., 2020), cell detection 

and tracking (Leahy et al., 2020), blastocyst stage identification and witnessing 

(Kanakasabapathy et al., 2020c), embryo grading and selection, and BL and implantation 

prediction (Louis et al., 2021). Furthermore, Dimitriadis and colleagues used an AI-implantation 

prediction model as a novel and unbiased morphology-based evaluation tool to assess the 

competencies of embryologists selecting embryos, performing vitrification and warming and of 

embryologists and physicians performing embryos transfers (Dimitriadis et al., 2021). It is 

important to note that these studies were done on retrospective data under experimental settings. 

The clinical application of AI still requires prospective studies.   

Implantation Prediction 

In a recent study, Fitz and colleagues sought to determine whether embryologists could improve 

their ability to select euploid embryos with the highest implantation potential with the aid of an 

AI-trained implantation algorithm.  In this two-part study, embryologists from 5 separate 

laboratories were asked to select the top embryo for transfer from an image set of 2 embryos 

(n=200 image sets).  Next, they were provided with the same image set and a notation of which 

embryo was predicted to implant using AI.  Embryologists were told that the AI-implantation 

algorithm had a 75% accuracy, which could be incorporated into their embryo selection decision.   

All 14 embryologists participating in this study improved their ability to select the top-quality 

embryo when incorporating AI with a mean percent improvement of 11.1% (range 1.4% to 

15.5%) (Fitz et al., 2021).  One limitation of this study is its retrospective nature.  

In studies using AI to predict embryo implantation potential on static or TLM images, secondary 

factors such as laboratory conditions or other human factors have not been analyzed or included 

in the models. Culture conditions and human expertise are important factors that influence 

embryo development and quality. For achieving a useful and objective prediction, these factors 

will need to be included in models. In addition, we know that successful implantation and live 

birth depend on other factors not inherent to the embryo. Predicting implantation solely on 

embryo quality is an incomplete assessment. The focus of AI embryo prediction models should 

be the ranking of the embryos within the patient cohort rather than on implantation prediction. 

The variation in success rates among IVF centers and labs prevents the establishment of 

universal AI models for implantation prediction (Zaninovic and Rosenwaks, 2020).  

How do we use AI-based models in the clinical lab setting and within lab workflows in a 

prospective way? First, we need to evaluate AI models in parallel with standard lab embryo 

                  



selection practice. Second, we need to perform prospective studies of embryo selection by 

machine and human.  

AI for Non-Invasive Ploidy Screening 

PGT for aneuploidy (PGT-a) remains the most objective way to assess an embryo. However, its 

invasive nature, cost, and the assumption of diagnostic accuracy limit a more widespread use. It 

is no surprise that noninvasive approaches for embryo selection including time-lapse 

morphokinetic evaluation (Campbell et al., 2013), morphology assessment (Capalbo et al., 2014; 

Zhan et al., 2020b), and AI systems (Pennetta et al., 2018; Meyer et al., 2020) have aimed to 

compare PGT-a outcomes against their findings. However, it is still difficult to find studies 

presenting AI systems for embryo ranking that are trained against ploidy status as their ground 

truth.   

The first published study of this kind was most likely by Chavez-Badiola et al., in which the 

authors trained and tested an AI model called ERICA to rank embryos based on its ability to 

predict euploidy, using a single static BL image as the only source of information. Following 

training and validation on 1,231 images from 3 IVF centers, the ERICA device showed 

significantly better predicting capabilities (70% overall accuracy for euploidy prediction) than 

chance and the embryologists involved in the study. It is important to acknowledge that despite 

seniority and experience, conclusions on the device’s superiority cannot be drawn based on a 

comparison against the performance of only two embryologists. As the authors acknowledge, a 

larger testing set, as well as a larger number of embryologists with different levels of experience 

and seniority, would be required to confirm the study’s results. At this point, however, the results 

are encouraging enough to suggest that ERICA has the potential to assist embryologists and 

clinicians during embryo selection in a noninvasive fashion (Chavez-Badiola et al., 2020b). 

We can anticipate that other similar full-paper publications will follow shortly, presenting new 

approaches aimed at embryo selection based on ploidy. These studies will perhaps target time-

lapse sequences (Barnes et al., 2020) and incorporate omics (Bori et al., 2021), patient and cycle 

characteristics (Jiang et al., 2021), noninvasive chromosome screening tests (Chavez-Badiola et 

al., 2020c), as well as new AI approaches. Building high-quality datasets from diverse settings—

while managing hype (VerMilyea et al., 2019) and expectations—are challenges that will 

remain.  

Conclusion  

AI has long been utilized in other industries and has recently found a place in medical imaging; 

however, it is just beginning to make an impact on the clinical practice of reproductive medicine, 

a field familiar to rapid advancements and open to using new technologies to achieve the 

ultimate goal of a healthy baby.  

Since there are over 2 million IVF cycles performed annually throughout the world, and with 

IVF being a medical procedure globally registered, one can only hope that the data collection 

from throughout the years will help to develop AI systems that are widely applicable across 

clinics and independent of differences in protocols and populations. Barriers to achieving this 

                  



include health record privacy terms, paper records, and variations in electronic medical record 

systems. 

AI systems developed thus far for the field of reproductive medicine have focused primarily on 

the use of embryo imaging and have been summarized here. However, AI has the potential to 

assist in other areas of reproductive medicine as well, including endometrial receptivity, uterine 

function, fertility impact of diseases such as endometriosis and adenomyosis, recurrent 

implantation failure, and recurrent pregnancy loss (Curchoe 2021). In summary, AI has the 

potential to be utilized as a promising tool to resolve many longstanding challenges in the field 

of reproductive medicine as well as to assist clinicians in decision-making and achieve the 

ultimate goal of a healthy live-born baby. However, at present, AI has not established its role in 

the world of reproductive medicine, and it is important to keep in mind that its use in improving 

outcomes is not, as of yet, proven in the literature. Further studies, ideally randomized 

controlled, are required, to identify indicated use of this very promising tool. 
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AI Terminology Abbreviat
ion 

Definition References 

Adaptive adversarial neural 
networks 

AANN Method of deep 
learning that can be 
used with unlabeled 
data from unseen 
domain-shifted 
datasets to adapt 
pretrained supervised 
networks to new 
distributions, even 
when data from the 
original distribution are 
not available. 

Kanakasabapathy et al., 2021 

Adversarial machine 
learning 

AML Adversarial machine 
learning is a machine 
learning technique that 
attempts to fool 
models by supplying 
deceptive input. 

Kianpour et al., 2020 

Artificial intelligence AI Any intelligence demon
strated by machines, in 
contrast to the natural 
intelligence displayed 
by humans and other 
animals.  

Poole et al., 1998; Malik et al., 
2021 

Artificial neural network ANN A highly abstracted and 
simplified model 
compared to the 
mammalian brain, used 
in machine learning. A 
set of units receives 
input data, performs 
computations on them, 
and passes them to the 
next layer of units. The 
final layer represents 
the answer to the 
problem. 

Curchoe and Bormann 2018 

Black box (N/A) The calculations 
performed by some 
deep learning systems 
between input and 
output are not easy 
(and potentially 
impossible) for humans 
to understand. 

Curchoe and Bormann 2018 

                  



Computer vision CV An interdisciplinary 
scientific field that 
deals with how 
computers can be 
made to gain high-level 
understanding 
from digital 
images or videos.   

Sonka et al., 2008 

Convolutional neural 
network 

CNN In deep learning, a 
convolutional neural 
network (CNN, or 
ConvNet) is a class of 
deep neural networks, 
mostly applied to 
analyzing visual 
imagery. 

Curchoe and Bormann 2018 

Data augmentation (N/A) Data augmentation in 
data analysis are 
techniques used to 
increase the amount of 
data. It helps 
reduce overfitting whe
n training a machine 
learning. 

Shorten et al., 2019 

Decision tree (N/A) A decision tree is 
a flowchart-like 
structure in which each 
internal node 
represents a "test" on 
an attribute, each 
branch represents the 
outcome of the test, 
and each leaf node 
represents a class label. 
The paths from root to 
leaf represent 
classification rules. 

Kamioski et al., 2017 

Deep learning DL A specific sub-field of 
deep learning. It is a 
process by which a 
neural network 
becomes sensitive to 
progressively more 
abstract patterns. 
Hundreds of successive 
layers of data 
representations are 
learned automatically 

Curchoe and Bormann 2018 

                  



through exposure to 
training data 

Feature extraction (N/A) In machine learning, a 
feature is an individual 
measurable property or 
characteristic of a 
phenomenon.  Features 
are intended to be 
informative and non-
redundant, facilitating 
the subsequent 
learning and 
generalization steps, 
and in some cases 
leading to better 
human interpretations. 

Bishop 2006 

Generative adversarial 
network 

GAN Two neural 
networks contest with 
each other in a game 
(in the form of a zero-
sum game, where one 
agent's gain is another 
agent's loss). 

Goodfellow et al., 2014 

Ground truth (N/A) Information that is 
known to be real or 
true, provided by direct 
observation and 
measurement 
(i.e. empirical evidence) 
as opposed to 
information provided 
by inference. 

Lemoigne and Caner 2006 

Hidden layers (N/A) An internal layer of 
neurons in an artificial 
neural network, not 
dedicated to input or 
output. 

Uzair and Jamil 2020 

Image segmentation (N/A) The process of 
partitioning a digital 
image into multiple 
segments 
(sets of pixels, also 
known as image 
objects). The goal of 
segmentation is to 
simplify and/or change 

Shapiro and Stockman 2001 

                  



the representation of 
an image into 
something that is more 
meaningful and easier 
to analyze. 

Machine learning ML Algorithms that find 
patterns in data 
without explicit 
instructions. ML is a 
single contributing 
entity for AI 
technology. 

Curchoe and Bormann 2018 

Overfitting (N/A) The production of an 
analysis that 
corresponds too closely 
or exactly to a set of 
data and may therefore 
fail to fit additional 
data or predict future 
observations reliably. 

Chicco 2017 

Prediction models (N/A) Uses statistics to 
predict outcomes. Most 
often the event one 
wants to predict is in 
the future, but 
predictive modelling 
can be applied to any 
type of unknown event, 
regardless of when it 
occurred.  

Geisser 1993 

Reinforcement learning RL An area of machine 
learning concerned 
with how software 
agents ought to 
take actions in an 
environment to 
maximize some notion 
of cumulative reward. 

Kaelbling et al., 1996 

Shallow learning (N/A) A type of machine 
learning where we 
learn from data 
described by pre-
defined features. 

Bengio et al., 2013 

Supervised learning SL The machine 
learning task of 
learning a function that 
maps an input to an 

Mohri et al., 2012; Hinton and 
Sejnowski 1999 

                  



output based on 
example input-output 
pairs. It infers a 
function 
from labeled training 
data consisting of a set 
of training examples.  

Support vector machines SVM In machine learning, 
SVMs are supervised 
learning models with 
associated 
learning algorithms tha
t analyze data used 
for classification and re
gression analysis. 

Cortes and Vapnik 1995 

Synthetic data (N/A) Any production data 
applicable to a given 
situation that are not 
obtained by direct 
measurement 

Patki et al., 2016 

Test data set (N/A) The sample of data 
used to provide an 
unbiased evaluation of 
a final model fit on the 
training dataset. 

Curchoe and Bormann 2018 

Training data set (N/A) The sample of data 
used to fit the model. 
The actual dataset that 
we use to train the 
model (weights and 
biases in the case of 
Neural Network). The 
model sees and learns 
from this data 

Curchoe and Bormann 2018 

Transfer learning  TL A technique in machine 
learning where the 
algorithm learns one 
task, and build on that 
knowledge while 
learning a different, but 
related, task. Transfer 
learning is an 
alternative approach to 
help mitigate the large, 
manually annotated 
data sets needed for 
training an AI. 

Curchoe and Bormann 2018 

                  



Underfitting (N/A) Occurs when a 
statistical model cannot 
adequately capture the 
underlying structure of 
the data. 

Chicco 2017 

Unsupervised learning  UL A type of self-
organized learning that 
helps find previously 
unknown patterns in 
data set without pre-
existing labels. It is also 
known as self-
organization and allows 
modeling probability 
densities of given 
inputs.  

Hinton and Sejnowski 1999 

Validation data set (N/A) The sample of data 
used to provide an 
unbiased evaluation of 
a model fit on the 
training dataset while 
tuning model 
hyperparameters. The 
evaluation becomes 
more biased as skill on 
the validation dataset is 
incorporated into the 
model configuration. 

Curchoe and Bormann 2018 

 
Table 1.  Glossary of artificial intelligence (AI) terminology. 

 

  

                  



Cell Type ART Procedure Summary of Advancement References 

Sperm 

Sperm count 
Automated calculation of sperm 
concentration on a handheld device. 

Kanakasabapathy et 
al., 2017 

Sperm motility 
assessment 

Automated calculation of sperm motility 
on a handheld device. 

Kanakasabapathy et 
al., 2017 

Forward progression 
score 

Automated measurement of sperm 
velocity and classification of individual 
sperm forward progression score. 

Kanakasabapathy et 
al., 2017; Goodsen 
et al., 2017 

DNA fragmentation 
assay 

Automated measurement of sperm DNA 
fragmentation on a handheld device. 

Dimitriadis et al., 
2019a 

Sperm viability 
assessment 

Automated differential count of live-dead 
sperm staining. 

Dimitriadis et al., 
2019a 

Sperm morphology 
measurement 

Automated classification and 
measurement of normal and abnormal 
sperm morphology forms. 

Mirsky et al., 2017; 
Thirumalaraju et al., 
2019a 

 

Oocyte 

Oocyte morphology 
classification 

Identification and classification of oocyte 
morphological features. 

Manna et al., 2013; 
Dickinson et al., 
2020; Targosz et al., 
2021 

Oocyte quality 
assessment 

Association of oocyte morphology with 
pronuclear development and subsequent 
embryo development. 

Kanakasabapathy et 
al., 2020a; Manna et 
al., 2013; Sacha et 
al., 2021 

Oocyte maturation 
assessment 

Automated identification of extruded 
polar body in metaphase II oocytes. 

Dickinson et al., 
2020 

Alignment of oocyte 
for ICSI 

Identification of proper location to inject 
sperm into oocytes during ICSI. 

Dickinson et al., 
2020 

 

Pronuclear 
Stage 

 

Fertilization 
assessment 

Automated fertilization assessment 14-18 
hours post-insemination. 

Dimitriadis et al., 
2019b; 
Kanakasabapathy et 
al., 2020a 

Pronuclear stage 
morphology 
classification 

Segmentation and classification of 
pronuclear stage morphologic features. Zhao et al., 2021 

Pronuclear stage 
quality assessment 

Prediction of embryo development at the 
pronuclear stage based on cytoplasmic 
movement. 

Coticchio et al., 
2021 

Assessment of ICSI 
Performance 

Automated monitoring of individual 
embryologists performing ICSI using deep-
learning enabled fertilization assessment. 

Thirumalaraju et al., 
2019b 

 

Cleavage 
Stage 

Predict day 5 embryo 
development 

Prediction of blastocyst stage 
development on Day 3 of development 
using extracted features, static images and 

Wang et al., 2018; 
Kanakasabapathy et 
al., 2020b; 

                  



time lapse imaging data from cleavage 
stage embryos. 

Bortoletto et al., 
2019; Liao et al., 
2021; d’Estaing et 
al., 2021 

Predict implantation 
potential 

Cleavage stage prediction of embryo 
implantation using extracted features in a 
decision tree model and from DL using 
static images.  

Carrasco et al., 
2017; Bormann et 
al., 2021a 

Monitor embryo 
culture environment 

Development of a key performance 
indicator (KPI) that associates the 
development prediction of cleavage stage 
embryos with implantation outcomes. 

Bormann et al., 
2021a 

Predict ploidy status 
of embryo 

Noninvasive embryo ploidy prediction 
using static cleavage stage embryo 
images. Meyer et al., 2020 

Identify correct 
location to perform 
assisted hatching 

Identification of proper location to 
perform laser assisted hatching based on 
cleavage stage embryo morphology. Kelly et al., 2020 

Embryo identification 
and witnessing 

Utilization of a CNN to assess cleavage 
stage embryo quality and develop a 
unique key specific to each embryo for 
purposes of tracking and witnessing them 
throughout culture. 

Bormann et al., 
2021b 

 

Blastocyst 
Stage 

Blastocyst stage 
classification 

Classification and grading of blastocyst 
stage embryos based on morphology and 
implantation outcome. 

Khosravi et al., 
2019; Bormann et 
al., 2020b; 
Thirumalaraju et al., 
2021; Malmsten et 
al., 2020; Leahy et 
al., 2020; VerMilyea 
et al., 2020 

Vitrification and 
Embryo biopsy 
decision making 

Use of static images to determine whether 
a blastocyst meets developmental criteria 
for vitrification and/or trophectoderm 
biopsy 

Souter et al., 2020; 
Bormann et al., 
2020 

Select embryo(s) for 
transfer 

Prediction and selection of blastocyst 
stage embryos for transfer based on static 
images, developmental size, 
trophectoderm expansion, and 
proteomics. 

Bormann et al., 
2020; Tran et al., 
2019; Louis et al., 
2021; Huang et al., 
2021; Bori et al., 
2020; Fitz et al., 
2021 

Predict ploidy status 
of embryo 

Noninvasive embryo ploidy prediction 
using static blastocyst stage embryo 
images and patient characteristics. 

Pennetta et al., 
2018; Chavez-
Badiola et al., 
2020b; Meyer et al., 

                  



2020; Jiang et al., 
2021 

Quality assurance 
monitoring of 
laboratory procedures 

Use of implantation prediction models to 
assess embryo selection, vitrification, 
warming and transfer competencies of 
embryologists and physicians.  

Dimitriadis et al., 
2021 

Embryo identification 
and witnessing 

Utilization of a CNN to assess blastocyst 
stage embryo quality and develop a 
unique key specific to each embryo for 
purposes of tracking and witnessing them 
throughout culture. 

Kanakasabapathy et 
al., 2020c 

 

Table 2.  List of key advancements in the automation of IVF laboratory procedures with the aid of 

artificial intelligence. 
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Key Message: Artificial Intelligence in the embryology laboratory: A review 

Artificial intelligence has the potential to be utilized as a tool to assist embryologists in daily activities 

such as performing morphological assessments and in selecting embryos for transfer.  AI also has the 

potential to assist clinicians in decision-making and in helping patients achieve their goal of having a 

healthy baby. 

 

 

                  


